Chasing after Secrets in Relational Databases

Joachim Biskup, Jan-Hendrik Lochner
Faculty of Informatics
Dortmund University of Technology
Germany

Sven Hartmann
School of Informatics
Clausthal University of Technology
Germany

Sebastian Link
School of Information Management
Victoria University of Wellington
New Zealand
Outline

► Access and Inference Control

► Controlled Query Evaluation

► Necessity of Inference Control

► Examples

► Conclusion and Future Work
Access and Inference Control

▶ data owners share some of their private data while hiding others

▶ balance conflicting security interests
 ↪ confidentiality: prohibitions for access beyond intended usage
 ↪ availability: permissions for requested resources as needed

▶ Access control:
 ↪ single query answers are granted or rejected
 ↪ procedurally decided by inspecting access privileges
 ↪ efficiently implementable in “real-time”

▶ Inference control:
 ↪ answer sequence stepwise censored and modified potentially
 ↪ algorithmically evaluated by deciding implication problems
 ↪ in general of high computational complexity

▶ approach to inference control: Controlled Query Evaluation
Controlled Query Evaluation

- \(db\)
 - information system instance
 - Herbrand–like interpretation structure

- \(pot_sec\)
 - confidentiality policy instance, i.e.
 - set of sentences (potential secrets)

- \(log\)
 - user log with user’s assumed knowledge
 - including constraints and previous answers
 - set of sentences

Ordinary query evaluation

Correct results

Censor

Correct results with modification requests

Modifier

Possibly distorted answer
An Example

► relation schema EMPLOYEE with attributes Id, Name, Salary
 ← and FD: ID → Name, Salary, i.e., ID is the unique key

► potential secret \(\Psi = (\exists X_{ID})\text{EMPLOYEE}(X_{ID}, \text{Steve Jobs, 500K}) \)
 ← (0001, Steve Jobs, 500K) belongs to EMPLOYEE-table

► user’s query sequence:
 ← \(\Phi_1 = (\exists X_N)\text{EMPLOYEE}(0001, X_N, 500K) \)
 ← \(\Phi_2 = (\exists X_S)\text{EMPLOYEE}(0001, \text{Steve Jobs, } X_S) \)

► correct answers to both queries and key property would reveal \(\Psi \)

► censor:
 ← logs correct answer to first query and
 ← refuses correct answer to second query
How the Refusal Censor Works

► tentative system behavior for \(\{ \Phi, \Phi \Rightarrow \Psi \} \) implies \(\Psi \)
 \(\Leftrightarrow \) if correct answer \(\Phi \), then refuse (return *mum*)
 \(\Leftrightarrow \) if correct answer \(\neg \Phi \), then return \(\neg \Phi \)

► “informed users” may use meta-inference:
 \(\Leftrightarrow \) the system refuses,
 \(\Leftrightarrow \) this happens only, if the correct answer is \(\Phi \)
 \(\Leftrightarrow \) consequently, \(\Phi \) is true indeed

► to avoid meta-inferences: refuse in both cases

► censor inspects if the following together imply a potential secret:
 \(\Leftrightarrow \) the a-priori knowledge
 \(\Leftrightarrow \) the answers to previous queries
 \(\Leftrightarrow \) either the correct query answer or the negated query answer
CQE is secure in the following sense

- focus here: existential-R-sentences (closed select-project queries)
 - as query language and confidentiality policy language
- For a every finite prefix Q' of a query sequence $Q = \langle \Phi_1, \Phi_2, \dots \rangle$ we find that
 - for every potential secret Ψ,
 - for every R-table r_1,
 - for every appropriate a-priori knowledge log_0,
 - there is some R-table r_2 that
 - satisfies log_0,
 - gives the same controlled answers to Q' as r_1, and
 - does not satisfy the potential secret Ψ
- r_1 (where Ψ may be true) and r_2 (where Ψ is false) indistinguishable
Drawbacks of Inference Control

- log file with previous query answers costly to maintain at run-time
- implication problem (with the log file as input) can be computationally hard or even undecidable
- some authors seriously suggest not to keep a user log
 - Stonebraker, Wong: Access control in a relational data base management system by query modification, ACM/CSC-ER Annual Conference

- example above shows that confidentiality cannot always be guaranteed without a log file
 - When can confidentiality be guaranteed without a user log?
 - Can we do something about the user log otherwise?
 - When exactly does inference control become necessary?
Natural Access Control

- Idea: check if user query Φ directly implies some potential secret Ψ

- can be decided efficiently for select-project queries Φ, Ψ
 - by simple pattern matching
 - $\Phi \models \Psi$ iff each constant c in Ψ appears at the same position in Φ
 - $(\exists X_S)\text{Employee}(0001, \text{Steve Jobs}, X_S) \models (\exists X_ID)(\exists X_S)\text{Employee}(X_ID, \text{Steve Jobs}, X_S)$

- reduces costly inference control to efficient natural access control
 - no user log nor theorem prover needed
 - highly efficient optimization for controlled query evaluation that preserves confidentiality
Showcases for Natural Access Control

► Showcase 1:
 ▶ DDL: schemata with FDs in Object Normal Form (ONF)
 ▶ CPL: select-project queries covering schema facts
 ▶ QL: select-project queries (existential-R-sentences)

► Showcase 2:
 ▶ DDL: arbitrary schemata with FDs
 ▶ CPL: select-project queries (existential-R-sentences)
 ▶ QL: select queries (R-sentences)

► dropping any single restriction results in violation of confidentiality

► concern: limits availability of data drastically
 ➞ for instance, neither showcase applies to our example
Characterizing Violations by Forbidden Structures

- any exhibited violation constitutes a *forbidden structure*
 - user must not learn both (0001, Steve Jobs) and (0001, 500K), if (Steve Jobs, 500K) is secret
 - user must not learn both (Id, Name)- and (Id, Salary)-values if the respective (Name, Salary)-combination is secret

- idea: explore forbidden structures as *inference signature*:
 - identify forbidden structures from schema and potential secrets at *declaration time* and compile into inference signature
 - express them in terms of templates that are implied by Σ
 - monitor user behavior at *run time* to check whether forbidden structure arises and refuse answer before last step

- neither log nor censor are needed in full generality to detect forbidden structures
Template Dependencies

- A template dependency (TD) expression $TD[h_1, \ldots, h_l | c]$ where
 - h_1, \ldots, h_l are the hypothesis rows
 - c is the conclusion row
 - Each row consists of n abstract symbols (one per attribute)
 - Symbols may occur more than once, but not for different attributes

- For two rows t_1, t_2 the agree set $ag(t_1, t_2) := \{ A | t_1(A) = t_2(A) \}$

- r satisfies $TD[h_1, \ldots, h_l | c]$ if whenever
 - r contains t_1, \ldots, t_l with $ag(h_i, h_j) \subseteq ag(t_i, t_j)$ for $1 \leq i < j \leq l$
 - Then r contains a tuple t with $ag(h_i, c) \subseteq ag(t_i, t)$ for $1 \leq i \leq l$

- $TD[h_1, \ldots, h_l | c]$ trivial iff c obtainable from some h_i by weakening
Our Example Re-Considered

for our example above, a “forbidden structure” is encoded in the TD

\[
\begin{align*}
\quad a_{ID} a_N b_S \\
\quad a_{ID} b_N a_S \\
\quad a_{ID} a_N a_S
\end{align*}
\]

encoding the violation of confidentiality:

\[\leftarrow\] non-trivial TD implied by \(ID \rightarrow Name, Salary \)
\[\leftarrow\] answers to queries \(\Phi_1 \) and \(\Phi_2 \) result in mapping \(a_{ID} \leftarrow 0001, a_N \leftarrow Steve Jobs, a_S \leftarrow \$500K \) that instantiate hypotheses
\[\leftarrow\] conclusion instantiated with potential secret \((Steve Jobs, \$500K)\)

violation of confidentiality occurs precisely when there is a potential secret that results from chasing previous query answers and a non-refused answer by the declared data dependencies
Forbidden Structure, sufficient for Violation

- assumptions:
 - $RS = (R, \mathcal{U}, \Sigma)$ where Σ consists of FDs and full join dependencies
 - a non-trivial $TD[h_1, \ldots, h_l | c]$ implied by Σ

- then there exist
 - a potential secret $\Psi \in \mathcal{L}_Q$ with schema $\mathcal{P} = \cup_{j=1}^{l} ag(h_j, c)$,
 - an instance r of schema RS, and
 - queries $\Phi_1, \ldots, \Phi_l \in \mathcal{L}_Q$ with schemes \mathcal{F}_i where $ag(h_i, h_j) \subseteq \mathcal{F}_i$
 for all $j \neq i$

- such that
 - all queries are permitted under natural access control, i.e., $\Phi_i \not\models \Psi$,
 - all queries are true in the instance r, i.e., $r \models \Phi_i$, and
 - the answers are violating, i.e., $\Sigma \cup \{\Phi_1, \ldots, \Phi_l\} \models \Psi$
Forbidden Structure, necessary for Violation

- assumptions:
 - relation schema R with a set Σ of FDs and full join dependencies
 - potential secret $\Psi \in \mathcal{L}_Q$ with scheme \mathcal{P},
 - instance r of schema RS,
 - queries $\Phi_1, \ldots, \Phi_l \in \mathcal{L}_Q$ with schemes \mathcal{F}_i

- such that
 - all queries are permitted under natural access control, i.e., $\Phi_i \not\models \Psi$,
 - all queries are true in the instance r
 - the answers are violating, i.e., $\Sigma \cup \{\Phi_1, \ldots, \Phi_l\} \models \Psi$

- then there is a non-trivial $TD[h_1, \ldots, h_l \mid c]$ implied by Σ such that
 - $\mathcal{P} = \bigcup_{j=1}^l ag(h_j, c)$
 - $ag(h_j, h_i) \subseteq \mathcal{F}_i$ for all $j \neq i$
Another Example

Consider the relation schemas $\langle R_1, U_1, \Sigma_1 \rangle$ and $\langle R_2, U_2, \Sigma_2 \rangle$ over

$U_1 = \{ \text{S(yptom)}, \text{M(ethod_of_Examination)} \}$,

$U_2 = \{ S, \text{D(agnosis)}, \text{P(atient)} \}$.

GPs see view V: $\text{SELECT * FROM R1,R2 WHERE R1.S = R2.S}$

\leftarrow MVDs $S \rightarrow M$ and $M \rightarrow D$ hold

GPs only allowed to see diagnosis for own patients

$\leftarrow \Psi = (\exists X_s)(\exists X_m)V(X_s, X_m, \text{Cancer, Smith})$ potential secret

queries

$\Phi_1 = (\exists X_m)(\exists X_p)V(\text{Fever, X_m, Cancer, X_p})$,

$\Phi_2 = (\exists X_d)V(\text{Fever, Xray, X_d, Smith})$

with schemes $F_1 = \{ S, D \}$ and $F_2 = \{ S, M, P \}$, respectively
Example Continued

- \(\Psi \) can still be inferred:
 - \(\leftarrow \) chase \(V(\text{Fever}, X_m, \text{Cancer}, X_p) \) \& \(V(\text{Fever}, \text{Xray}, X_d, \text{Smith}) \) by \(S \rightarrow M \)
 - \(\leftarrow \) leads to \(V(\text{Fever}, X_m, X_d, \text{Smith}) \) and \(V(\text{Fever}, \text{Xray}, \text{Cancer}, X_p) \)
 - \(\leftarrow \) chase \(V(\text{Fever}, \text{Xray}, X_d, \text{Smith}) \) \& \(V(\text{Fever}, \text{Xray}, \text{Cancer}, X_p) \) by \(M \rightarrow D \)
 - \(\leftarrow \) leads to \(V(\text{Fever}, \text{Xray}, \text{Cancer}, \text{Smith}) \)

- data-dependent derivation of prohibited information can already be anticipated from the view declaration

- two MVDs imply non-trivial template dependency:
 \[
 \begin{align*}
 a_S & b_1 a_D b_2 \\
 a_S a_E b_3 a_P \\
 a_S a_E a_D a_P
 \end{align*}
 \]

- \(a_S \leftarrow \text{Fever}, a_D \leftarrow \text{Cancer}, a_P \leftarrow \text{Smith} \)
Conclusion and Future Work

- cqε guarantees confidentiality by inference control
- costly to implement: log file and theorem proving
- characterized necessity for inference control in terms of FDs and JDs
- natural access control
 - prevents any forbidden structures to ever arise
 - very efficient but maximal availability not always achievable
- signature-based access control
 - refuses rise of forbidden structure in last step
 - maximal availability and still efficient