A Decision Support Model for Intermediary Selection in the Supply Chain

Markus Kichberg

Institute for Infocomm Research
Agency for Science, Technology and Research (A*STAR)
Singapore

Remy Flatt, Sebastian Link

School of Information Management
Victoria University of Wellington
New Zealand
Outline

- Intermediary Selection in the Supply Chain
- A Conceptual Process Model for Intermediary Selection
- Decision Support from Artificial Intelligence Tools
- Conclusion and Future Work
Intermediary Selection in the Supply Chain

- intermediary: third party offering services between two trading parties
- supply chain management (SCM):
 - traditionally focused on purchasing and logistics
 - more emphasis on value creation as source of competitive advantage
 - customer service, profit generation, asset utilization, cost reduction
- effective selection of intermediaries is essential to achieve these goals
 - combinations of traditional channels, dis-, re- and cyber-mediation
- supply chain design: complex decision that involves
 - strategic choice of the appropriate channel structure, and
 - tactical selection of the appropriate intermediaries
 - \(2^n\) potential chains for \(n\) candidates, not a one-time process
- supply chain coordinators require assistance in the selection process
 - advice by available experts or automated decision support, or
 - process model guiding the intermediary selection process
The Generic Four-Stage Strategy Process Model

- intermediary selection
 part of third phase

- to define business
 strategy, options
 for intermediaries are

 → generated,
 → evaluated, and
 → selected
A Conceptual Process Model for Intermediary Selection

Divide and Conquer

- Iterative with each iteration consisting of four phases
 - Iterations triggered by events, support of target chain’s *agility*
 - Changes in supply/demand, revised strategic objectives or disasters
- Phase 1: Fragmentation of Candidates and Allocation of Experts
 - Each intermediary candidate covered by some fragment
 - Coordinator allocates domain experts to champion fragments
 - Fragmentation could be based on scope of expert domain knowledge
- Phase 2: Development of Local Plans (Black Box here)
 - Experts develop local plans for selection within their fragments
 - Recommendations in some formal language (example later)
 - Consist of specific or conditional selections
 - Aim to *adapt* target chain to local market situations or changes
A Conceptual Process Model for Intermediary Selection

Alignment and Preference Selection

Phase 3: Strategy or Approximation Inference

- selection of intermediaries that meet all local plans
- recommendations of different local plans may be inconsistent
- experts must align local plans, possibly by collaboration
- iterated until consistency achieved or inconsistency unresolvable
- approximations of strategy developed in latter case
- several tactics of either strategy or approximation available

Phase 4: Selection of Preferred Tactics

- heuristics narrow down choices of tactics available
- heuristics based on corporate strategies (minimize intermediaries)
- preferred tactic identifies a unique selection of intermediaries
Summary of
Conceptual Process Model for Intermediary Selection
Automated Assistance

- process model suggests to have automated assistance for:
 - the decision whether local plans can be integrated into strategy
 - inferring all tactics available for a strategy
 - approximating a strategy as closely as possible
 - choosing tactics available for strategy or approximation

- require a formal language
 - expressive enough for domain experts to specify local plans, and
 - which enables efficient reasoning about consistency
 - coordination mechanism forcing experts to express key insights

- showcase for language here: Boolean propositional logic
 - expressive enough to accommodate recommendations for fragments
 - off-the-shelf tools available to assist with problems above
Candidate Fragmentation

- set $SCC = \{I_1, \ldots, I_n\}$ of intermediary candidates I_j

- fragmentation of SCC is collection $\mathcal{F}(SCC) \subseteq 2^{SCC}$ such that for every $I \in SCC$ there is some $F \in \mathcal{F}(SCC)$ such that $I \in F$

- example: down-stream supply chain $SCC = \{W_1, W_2, R_1, R_2\}$
 - two wholesalers W_1 and W_2, and two retailers R_1 and R_2
 - four fragments based on geographical location & domain knowledge
 - $F_1 = \{W_1, R_1\}$, $F_2 = \{W_2, R_2\}$, $F_3 = \{W_1, W_2\}$, $F_4 = \{R_1, R_2\}$
Example of Fragmentation and Allocation

F_1
Expert: Geographic Region 1

F_2
Expert: Geographic Region 2

F_3
Expert: Wholesalers

F_4
Expert: Retailers

W_1
R_1

W_2
R_2
Local Plans

- \(LS_{F_1}\): if \(W_1\) is selected as an intermediary, then \(R_1\) as well
 \(\lambda_{F_1} = W_1 \Rightarrow R_1\),

- \(LS_{F_2}\): if \(W_2\) is selected as an intermediary, then \(R_2\) as well
 \(\lambda_{F_2} = W_2 \Rightarrow R_2\),

- \(LS_{F_3}\): select either \(R_1\) or \(R_2\)
 \(\lambda_{F_3} = R_1 \Leftrightarrow \neg R_2\), and

- \(LS_{F_4}\): select both \(W_1\) and \(W_2\)
 \(\lambda_{F_4} = W_1 \land W_2\)

- can be complex: select precisely two manufacturers out of three when the distributor is not selected
 \(\neg D \Rightarrow (M_1 \land M_2 \land \neg M_3) \lor (M_1 \land \neg M_2 \land M_3) \lor (\neg M_1 \land M_2 \land M_3)\)
Tactics and Strategies

- A **plan** for selection wrt $\mathcal{F}(SCC')$ is the union $\pi = \bigcup_{F \in \mathcal{F}(SCC')} \{ \lambda_F \}$.

- A **policy** ϑ of a plan π is a truth assignment $\vartheta : SCC \rightarrow \{true, false\}$.

- A policy ϑ of a plan π is a **tactic** of π if ϑ is a model of π.

- A plan is a **strategy**, usually denoted by ζ, if there is some tactic for ζ.

- A tactic ϑ of strategy ζ **defines** selection $\iota_\vartheta = \{ I \in SCC \mid \models_\vartheta I \}$.

- A **selection of intermediaries** from SCC wrt $\mathcal{F}(SCC)$ is a subset $\iota \subseteq SCC$ such that:
 - There is a strategy ζ wrt $\mathcal{F}(SCC')$ and
 - A tactic ϑ of ζ such that $\iota = \iota_\vartheta$.
The Decision Problem *Strategy*

Problem: Strategy

INPUT: A plan π

QUESTION: Is π a strategy?

<table>
<thead>
<tr>
<th>Policy</th>
<th>Intermediary ϑ</th>
<th>Plan $\pi = {\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi, \lambda_{F_4}^\pi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W_1</td>
<td>W_2</td>
</tr>
<tr>
<td>ϑ_1</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_2</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_3</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_4</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_5</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_6</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_7</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_8</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_9</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_{10}</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_{11}</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_{12}</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>ϑ_{13}</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_{14}</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_{15}</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>ϑ_{16}</td>
<td>false</td>
<td>false</td>
</tr>
</tbody>
</table>
The Enumeration Problem All Tactics

Problem: All-Tactics
INPUT: A plan \(\pi \)
QUESTION: What are all tactics of \(\pi \)?

▶ plan \(\zeta = \{\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi\} \) input

▶ table

<table>
<thead>
<tr>
<th>Tactic (\vartheta_i)</th>
<th>(W_1)</th>
<th>(W_2)</th>
<th>(R_1)</th>
<th>(R_2)</th>
<th>Selection (\iota_{\vartheta_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vartheta_6)</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>{(W_1), (R_1)}</td>
</tr>
<tr>
<td>(\vartheta_{11})</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>{(W_2), (R_2)}</td>
</tr>
<tr>
<td>(\vartheta_{14})</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>{(R_1)}</td>
</tr>
<tr>
<td>(\vartheta_{15})</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>{(R_2)}</td>
</tr>
</tbody>
</table>

shows all four tactics \(\vartheta_i \) of \(\zeta \), and the associated selections \(\iota_{\vartheta_i} \).
The Enumeration Problem *All Best Approximations*

- **approximation** of plan π: a subset $\varsigma \subseteq \pi$ such that
 $\hookrightarrow \varsigma$ is a strategy and no strategy $\varsigma' \subseteq \pi$ is a proper superset of ς

- **best approximation** of plan π: approximation ς of π such that
 \hookrightarrow no approximation ς' of π has more local plans than ς

Problem: All-Best-Approximations

INPUT: A plan π

QUESTION: What are *all* best approximations of π?

<table>
<thead>
<tr>
<th>Best Approximation α</th>
<th>Tactic of α (W_1, W_2, R_1, R_2)</th>
<th>Selection ι</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{true, false, true, false})$</td>
<td>${W_1, R_1}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{false, true, false, true})$</td>
<td>${W_2, R_2}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{false, false, true, false})$</td>
<td>${R_1}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{false, false, false, true})$</td>
<td>${R_2}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{true, true, true, true})$</td>
<td>${W_1, W_2, R_1, R_2}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi}$</td>
<td>$(\text{true, true, true, false})$</td>
<td>${W_1, W_2, R_1}$</td>
</tr>
<tr>
<td>${\lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_4}^\pi}$</td>
<td>$(\text{true, true, false, true})$</td>
<td>${W_1, W_2, R_2}$</td>
</tr>
</tbody>
</table>
The Enumeration Problem All Minimal Tactics

- minimal tactic of plan π is tactic ϑ of π such that
 \ni no other ϑ' of π defines $\iota_{\vartheta'}$ that is proper subset of ι_{ϑ}

Problem: All-Minimal-Tactics

INPUT: A plan π
QUESTION: What are all minimal tactics of π?

- with input $\alpha = \{\lambda^F_{\pi_1}, \lambda^F_{\pi_2}, \lambda^F_{\pi_3}\}$

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W_1, W_2, R_1, R_2)</td>
<td>ι</td>
</tr>
<tr>
<td>(false, false, true, false)</td>
<td>${R_1}$</td>
</tr>
<tr>
<td>(false, false, false, true)</td>
<td>${R_2}$</td>
</tr>
</tbody>
</table>

- $\text{(true, false, true, false)}$ not minimal
The Enumeration Problem *All X-Minimal Tactics*

- **X \subseteq SCC**: an *X-minimal tactic* of \(\pi \) is tactic \(\vartheta \) of \(\pi \) such that
 - no \(\vartheta' \) of \(\pi \) satisfies \(\iota_{\vartheta'} \cap X \subset \iota_{\vartheta} \cap X \)

Problem: All-X-Minimal-Tactics

INPUT: A plan \(\pi \), a subset \(X \) of candidate intermediaries

QUESTION: What are all \(X \)-minimal tactics of \(\pi \)?

- **input** \(\alpha = \{ \lambda_{F_1}^\pi, \lambda_{F_2}^\pi, \lambda_{F_3}^\pi \} \) and \(X = \{ W_1, R_1 \} \)

<table>
<thead>
<tr>
<th>Tactic</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>((W_1, W_2, R_1, R_2))</td>
<td>(\iota)</td>
</tr>
<tr>
<td>((false, true, false, true))</td>
<td>{W_2, R_2}</td>
</tr>
<tr>
<td>((false, false, false, true))</td>
<td>{R_2}</td>
</tr>
</tbody>
</table>

- \((false, false, true, false)\) is not \(X \)-minimal:
 - \((false, true, false, true)\) does neither select \(W_1 \) nor \(R_1 \)
Conclusion and Future Work

▶ proposed conceptual process model to assist intermediary selection
 → iterative, four-stage, divide-and-conquer approach to support agility, adaptability, alignment, and automated assistance
▶ plug-in support for a suitable logic
▶ automated assistance by off-the-shelf AI tools:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Related AI Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>SAT</td>
</tr>
<tr>
<td>All-Best-Approximations</td>
<td>ALL-MC</td>
</tr>
<tr>
<td>All-Tactics</td>
<td>ALLSAT</td>
</tr>
<tr>
<td>All-Minimal-Tactics</td>
<td>ALL-MINIMAL</td>
</tr>
<tr>
<td>All-X-Minimal-Tactics</td>
<td>ALL-X-MINIMAL</td>
</tr>
<tr>
<td>Tactic</td>
<td>MODEL</td>
</tr>
<tr>
<td>Minimal Tactic</td>
<td>MIN-MODEL</td>
</tr>
</tbody>
</table>

▶ test process model in various case studies
▶ analyze the potential of other formal languages
 → first-order logic, modal logics, para-consistent logics