Boolean Constraints for XML Modeling

Sven Hartmann
Department of Informatics
Clausthal University of Technology
Germany

Sebastian Link
School of Information Management
Victoria University of Wellington
New Zealand

Thu Trinh
School of Engineering and Advanced Technology
Massey University
New Zealand

Tsukuba, Japan, 2 June 2008
Motivation

- XML: de-facto standard for Web data exchange and integration
- high degree of syntactic flexibility, low degree of semantic capabilities
- challenge for computer scientists: provide full-fledged tools that can store, manage and process XML data in its native format

- integrity constraints enhance semantic capabilities:
 - find natural classes of constraints that can be maintained efficiently
 - balance trade-off between expressiveness and efficiency
Different Concepts of XML Functional Dependencies

• the same article has the same price (subject in the literature):

• whenever same items are bought, the same discount applies:
A fundamental Problem

- implicit knowledge applicable to modeling, designing, processing
- express (much) AND reason (efficiently) about domain knowledge

- Rule 1: the same customer receives the same discount (loyalty)
- Rule 2: customers that buy all the same items receive the same discount
- Rule 3: when same discount applied, then purchases belong to same customer or consist of the same items
XML Trees, Data Trees and Schema Trees

- **XML trees**: node-labelled tree T where kind labels node as element or attribute, and name gives node an element- or attribute-name

- **XML data tree**: leaf nodes obtain string value by val

- **XML schema tree**: no vertex has two successors of same kind and name, and $freq$ labels each arc with frequency in $\{?, 1, *, +\}$
 - arcs terminating in attribute nodes have frequency $?$ or 1
Homomorphisms and Isomorphisms

• homomorphism ϕ maps T'-vertices to T-vertices such that
 • T'-arcs (v', w') become T-arcs $(\phi(v'), \phi(w'))$,
 • root-preserving,
 • kind-preserving,
 • name-preserving.

• homomorphism ϕ is isomorphism if
 • ϕ bijective and
 • ϕ^{-1} homomorphism

• isomorphic data trees T' and T are equivalent (or copies of one another) if the isomorphism is evaluation-preserving
Compatibility

- \(T' \) is compatible with \(T \) if there is a homomorphism \(\phi : V_{T'} \rightarrow V_T \) such that for each vertex \(v' \) of \(T' \) and each arc \(a = (\phi(v'), w) \) of \(T \), the number of arcs \(a' = (v', w') \) mapped to \(a \) is
 - at most 1 if \(\text{freq}(a) = ? \),
 - exactly 1 if \(\text{freq}(a) = 1 \),
 - at least 1 if \(\text{freq}(a) = + \),
 - and arbitrarily many if \(\text{freq}(a) = * \)
Subgraphs

- $Sub_T(v)$: the v-subgraphs of T (unions of dipaths from v to a leaf)
- v-subgraph U denoted by $[l_1, \ldots, l_k]$ with leaves l_i of U
- total v-subgraph $T(v)$, empty v-subgraph $[\emptyset]$
- projection $T' \mid_U$ of data tree T' to r_T-subgraph U of schema tree T: union of all copies of some r_T-subgraph of U in T'
Which v-subgraphs identify Pre-Images up to Equivalence?

- the projection on [Article] and the projection on [Price] do not allow us to distinguish between the second and the third v_{Purchase} pre-image
Essential v-Subgraphs

• $X, Y \in Sub_T(v)$ are reconcilable iff there are v-subgraphs X' of X and Y' of Y such that
 • X' and Y' share no arc of $\ast, +$-frequency and
 • $X' \sqcup Y' = X \sqcup Y$ holds

• X and Y not reconcilable iff we can find T-compatible data tree T' and two pre-images W, W' of $T(v)$ in T' such that $W |_X$ is equivalent to $W' |_X$, $W |_Y$ is equivalent to $W' |_Y$, but $W |_{X \sqcup Y}$ is not equivalent to $W' |_{X \sqcup Y}$

• essential subgraphs: smallest set $\mathcal{E}(v) \subseteq Sub_T(v)$ such that
 • all unary v-subgraphs are in $\mathcal{E}(v)$,
 • if $X, Y \in \mathcal{E}(v)$ are not reconcilable, then $X \sqcup Y \in \mathcal{E}(v)$
Example

[Customer], [Article], [Price], [Discount], and [Article,Price] from the essential $v_{Purchase}$-subgraphs
Boolean Constraints

Let T be an XML schema tree, and $v \in V_T$ a vertex of T. The set of Boolean constraints over the vertex v is defined as the smallest set $BC(v)$ with the following properties:

- if $X \in \mathcal{E}(v)$, then $v : X \in BC(v)$,
- if $v : \varphi \in BC(v)$, then $v : \neg \varphi \in BC(v)$, and
- if $v : \varphi, v : \psi \in BC(v)$, then $v : (\varphi \land \psi) \in BC(v)$.

Examples:

- $\varphi_1 = v_{\text{Purchase}} : [\text{Customer}]$,
- $\varphi_2 = v_{\text{Purchase}} : [\text{Customer}] \lor ([\text{Article}] \land [\text{Price}])$,
- $\varphi_3 = v_{\text{Purchase}} : [\text{Customer}] \lor [\text{Article,Price}]$,
- $\varphi_4 = v_{\text{Purchase}} : [\text{Article,Price}] \Rightarrow [\text{Discount}]$, and
- $\varphi_5 = v_{\text{Purchase}} : [\text{Discount}] \Rightarrow ([\text{Customer}] \lor [\text{Article,Price}])$.
Satisfaction of Boolean Constraints

- T schema tree, $v \in V_T$, T' is T-compatible data tree

- distinct pre-images W_1, W_2 of $T(v)$ in T' satisfy φ over v:
 - if $\varphi = v : X$, then $W_1|_X$ and $W_2|_X$ are equivalent,
 - if $\varphi = v : \neg \psi$, then W_1, W_2 do not satisfy $v : \psi$,
 - if $\varphi = v : (\psi_1 \land \psi_2)$, then W_1, W_2 satisfy both $v : \psi_1$ and $v : \psi_2$

- T' satisfies φ over v iff for all distinct pre-images W_1, W_2 of $T(v)$ in T' we have that W_1, W_2 satisfy φ
Correspondence to Propositional Logic

• $\tau : \mathcal{E}(v) \rightarrow \mathcal{V}$ bijection where \mathcal{V} set of propositional variables

• extend to $\tau : BC(v) \rightarrow F_{\mathcal{V}}$ with $\varphi \mapsto \varphi'$ via:
 - if $\varphi = X \in \mathcal{E}(v)$, then $\varphi' = \tau(X)$
 - for $\varphi = \neg \psi$ we have $\varphi' = \neg \psi'$, and
 - for $\varphi = (\psi_1 \land \psi_2)$ we have $\varphi' = (\psi'_1 \land \psi'_2)$

• $\Sigma' = \{ \sigma' \mid \sigma \in \Sigma \}$
• $\Sigma'_v = \{ \tau(X) \Rightarrow \tau(Y) \mid X, Y \in \mathcal{E}(v), X \text{ covers}^1 Y \}$

• Equivalent are:
 (i) Σ implies φ,
 (ii) $\Sigma' \cup \Sigma'_v$ logically implies φ'
An Example - Constraints

- Σ consists of
 - $\nu_{\text{Purchase}} : [\text{Customer}] \Rightarrow [\text{Discount}]$
 - $\nu_{\text{Purchase}} : [\text{Article,Price}] \Rightarrow [\text{Discount}]$

- Σ does not imply

$$\nu_{\text{Purchase}} : [\text{Discount}] \Rightarrow ([\text{Customer}] \lor [\text{Article,Price}])$$
The Example from a Logical Perspective

• define $\tau : \mathcal{E}(v_{Purchase}) \rightarrow \mathcal{V}$ by
 • $\tau(\lbrack \lbrack Customer \rbrack \rbrack) = V_1$, $\tau(\lbrack \lbrack Article \rbrack \rbrack) = V_2$,
 • $\tau(\lbrack \lbrack Price \rbrack \rbrack) = V_3$, $\tau(\lbrack \lbrack Discount \rbrack \rbrack) = V_4$, and
 • $\tau(\lbrack \lbrack Article, Price \rbrack \rbrack) = V_5$.

• as propositional formulae we obtain:
 • $\Sigma' = \{V_1 \Rightarrow V_4, V_5 \Rightarrow V_4\}$,
 • $\Sigma'_{v_{Purchase}} = \{V_5 \Rightarrow V_2, V_5 \Rightarrow V_3\}$, and
 • $\varphi' = V_4 \Rightarrow (V_1 \lor V_5)$.

• the truth assignment θ defined by $\theta(V_i) = 1$ if and only if $i \in \{2, 3, 4\}$ satisfies all the formulae in $\Sigma' \cup \Sigma'_{v_{Purchase}}$, but does not satisfy φ'.
Reasoning about Boolean Constraints

- two pre-images in T' agree on projections to precisely those essential subgraphs whose corresponding propositional variable V is assigned the truth value 1 by θ

- $coNP$-complete in general

- however: off-the-shelf SAT solvers applicable

- several tractable subclasses can be identified:
 - functional dependencies
 - degenerated multivalued dependencies
 - 2-literal constraints
Conclusion and Future Work

• introduced the class of Boolean constraints into XML

• based on homomorphisms between XML schema and data trees

• justified their definition by demonstrating which \(v \)-subgraphs of XML schema tree \(T \) determine pre-images of \(T(v) \) up to equivalence

• capture propositional reasoning about a fixed schema node

• Boolean constraints over different vertices \(v \)?

• multiset/set/list semantics?

• redundancies and update anomalies?